

EMO6AX-E1 模块用户手册

Version 2.1

2020年3月25日

©Copyright 2019 Leadshine Technology Co., Ltd.
All Rights Reserved.

本手册版权归深圳市雷赛控制技术有限公司所有,未经本公司书面许可,任何人不得翻印、翻译和抄袭本手册中的任何内容。

本手册中的信息资料仅供参考。由于改进设计和功能等原因, 雷赛公司保留对本资料的最 终解释权, 内容如有更改, 恕不另行通知。

修改记录

松か口田	и ⊏ — Н-		修改说明	tni 生i k
修改日期	版本	原来内容	更新内容	拟制人
20200325	V2. 1		重新排版	产品部

调试机器要注意安全! 用户必须在机器中设计有效的安全保护装置,在软件中加入出错处理程序。否则所造成的损失,雷赛公司没有义务或责任负责。

目 录

第1章 产品概述	1
1.1 产品简介	1
1.2 产品特点	1
1.3 技术规格	1
1.4 安装使用	2
第2章 产品外观及硬件接线	4
2.1 产品外观	4
2.2 接口分布及针脚定义	4
2.2.1 J1 电源接口	5
2.2.2 J2 接口定义	5
2.2.3 J3 接口定义	6
2.2.4 J4 接口定义	6
2.2.5 J5 接口定义	7
2.2.6 J6 接口定义	7
2.3 接口电路	7
2.3.1 模拟量输入信号接口	7
2.3.2 模拟量输出信号接口	8
2.4 数据格式	9
2.4.1 模拟量输入数据格式	9
2.4.2 模拟量输出数据格式	9
第3章 指示灯定义及说明	11
3.1 指示灯定义	11
3.2 指示灯状态	
第 4 章 对象字典	13
4.1 通用参数	13
4.2 参数配置(SDO)	13
第 5 章 使用案例	15
5.1 IEC 示例	15
5.1.1 硬件连接	

	EtherCAT 主站的添加及配置	
5.1.3	模块的添加	20
5.1.4	模块配置	23
5.1.5	应用示例	24
5.2 BASI	IC 示例	27
5.2.1	硬件连接	27
5.2.2	EtherCAT 主站的添加及配置	28
5.2.3	模块的添加	29
5.2.4	模块的配置	34
5.2.5	BASIC 应用例程	35
5.2.6	API 应用例程	41
5.3 控制	刊卡操作 EM06AX-E1 模拟量模块 C#示例	43
5.3.1	硬件连接	43
5.3.2	EtherCAT 主站的添加及配置	44
5.3.3	模块的添加	44
5.3.4	模块的配置	45
5.3.5	应用例程	46

网址: www.szleadtech.com

第1章 产品概述

1.1 产品简介

雷赛 EM06AX-E1 模块是一款高性能、高可靠性的 EtherCAT 总线 AD/DA 模块,具有 4 路 AD 输入和 2 路 DA 输出,采用的是 16 位的模拟器件。其电源电路加有隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性,软件有滤波函数进行软件滤波。

EM06AX-E1 模块,主要用于与雷赛公司的支持 EtherCAT 总线通讯的控制卡和控制器配套使用。

1.2 产品特点

- ① 4路模拟量输入:提供过压保护,抗干扰滤波。
- ② 2路模拟量输出:提供过压、过流、短路保护。
- ③ 内部 24V 隔离电源,具有直流滤波器。
- ④ 铁壳安装,插拔式接线端子。

1.3 技术规格

EMO6AX-E1 模块的主要规格指标如下:

表 1.1 EM06AX-E1 规格指标

模拟/数字(AD)部分	电压输入
电源电压	24Vdc (20Vdc~28Vdc)
模拟信号输入通道	4 路
输入量程	-10V~10V/0V~10V
转换精度	16 位
输入阻抗	200kΩ以上
精度(25℃)	±0.1%
精度(0~55℃)	±0.2%

数字/模拟(DA)部分	电压输出
模拟信号输出通道	2 路
输出量程	-10V~10V/0V~10V
分辨率	16 位
精度(25℃)	±0.1%
精度(0~55℃)	±0.2%
输出阻抗	≤0.5Ω
一般规格	
功率消耗	3W @ 24Vdc
隔离方式	通信隔离、供电隔离

1.4 安装使用

EM06AX-E1 为独立式模拟量扩展模块,采用定位孔的方式安装,安装尺寸如图 1.1、1.2 所示(单位均为 mm):

图 1.1 安装底板俯视图

图 1.2 安装底板正视图

第2章 产品外观及硬件接线

2.1 产品外观

雷赛 EM06AX-E1 EtherCAT 总线模拟量扩展模块提供 4 路模拟输入、2 路模拟输出,带有两个立式 RJ45 EtherCAT 扩展口,如图 2.1 所示。

图 2.1 EM06AX-E1 模拟量扩展模块俯视图

2.2 接口分布及针脚定义

雷赛 EM06AX-E1 模块各接口如图 2.2 所示, 其接口定义, 如表 2.1 所示。

名称	功能介绍
Ј1	直流 24V 电源输入
Ј2	EtherCAT 总线接口
Ј3	电压模式使能以及量程开关
J4	模拟量输出 DAO~DA1
J5	模拟量输入 ADO~AD3
Ј6	系统指示灯

表 2.1 接口功能简述

技术支持热线: 0755-26417593 4

图 2.2 EM06AX-E1 模拟量扩展模块接口图

2.2.1 J1 电源接口

J1 为 24V 电源输入接口,标有 24V 的端子接+24V,标有 EGND 的端子接外部电源地。SG 为外壳地接口。

2.2.2 J2接口定义

接口 J2 是 EtherCAT 总线接口,采用 RJ45 端子,其引脚号和信号对应关系见表 2.2 所示:

ECAT-IN 信号	信号描述	ECAT-OUT 信号	信号描述	说明
1	TX+	1	TX+	发送信号+
2	TX-	2	TX-	发送信号-
3	RX+	3	RX+	接收信号+
4	NC	4	NC	保留
5	NC	5	NC	保留
6	RX-	6	RX-	接收信号-

表 2.2 接口 J2 引脚号和信号关系表

7	NC	7	NC	保留
8	NC	8	NC	保留

2.2.3 J3接口定义

J3 接口是输入输出模式使能和量程设置开关,其拨码各位和信号对应关系见表 2.3 所示:

J3 设置 PIN2 PIN3 PIN4 模式 量程 PIN1 0FF AD 电压 ON 保留 **OFF** DA 电压 ON 保留 **OFF** AD: $-10V^{\sim}10V$ ON AD: $0V^{\sim}10V$ DA: $-10V^{\sim}10V$ 0FF DA: $0V^{\sim}10V$ ON

表 2.3 J3 引脚号和信号关系表

注 意: 模拟量模块两路输出口输出模式只能同时设置,不可单独设置,PIN4 置为 0FF 表示 DA 全为 $-10V^{\sim}10V$ 量程输出,0N 表示 DA 全为 $0V^{\sim}10V$ 量程输出,AD 同理。

2.2.4 J4接口定义

J4接口具有2路模拟量输出(CHO-CH1),对应的引脚分布如表2.4所示:

2 7 1 3 5 6 8 SG OUT0 AGND SG SG OUT1 **AGND** SG CH0 CH1

表 2.4 接口 J4 引脚分布

技术支持热线: 0755-26417593 6

2.2.5 J5接口定义

J5 接口具有 4 路模拟量输入(CHO-CH3),对应的引脚分布如表 2.5 所示:

表 2.5 接口 J5 引脚分布

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SG	AGND	INO+	INO-	SG	AGND	IN1+	IN1-	SG	AGND	IN2+	IN2-	SG	AGND	IN3+	IN3-
	(СНО			(CH1			(CH2			С	Н3	

2.2.6 J6接口定义

J6 接口定义参考 3.1 节。

2.3 接口电路

2.3.1 模拟量输入信号接口

EM06AX-E1 为用户提供 4 路模拟量输入信号,用于传感器信号或其它信号的输入。其电源 电路加有隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。

模拟量输入信号接口原理图如图 2.3 所示:

图 2.3 模拟量输入原理图

2.3.2 模拟量输出信号接口

EM06AX-E1 为用户提供 2 路模拟量输出信号,用于传感器信号或其它信号的输出。其电源电路加有隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。

模拟量输出信号接口原理图如图 2.4 所示:

图 2.4 模拟量输出原理图

2.4 数据格式

2.4.1 模拟量输入数据格式

 实际输入范围
 软件数值范围

 电压数据格式 1
 -10V ~ 10 V
 -100000 ~ 100000

 电压数据格式 2
 0V ~ 10 V
 0 ~ 100000

表 2.6 模拟量电压输入数据格式

注 意:软件电压数值是实际输入电压数值(单位:V)的10000倍。

2.4.2 模拟量输出数据格式

表 2.7 模拟量输出数据格式

	实际输出范围	软件数值范围
电压数据格式1	-10 V $^{\sim}$ 10 V	-100000 ~ 100000
电压数据格式 2	0V ~ 10 V	0 ~ 100000

注 意: 软件电压数值是实际输出电压数值(单位: V)的 10000倍。

第3章 指示灯定义及说明

3.1 指示灯定义

EMO6AX-E1 模块上有 POWER、RUN、ERROR 以及网口指示灯,其定义和作用如下:

POWER: 电源指示灯,用于指示模块+24V的上电状态。

RUN: 连接指示灯,用于指示模块当前主从站连接状态

ERROR: 错误指示灯,提示模块处于异常状态

网口指示灯:包含绿色和黄色两种指示灯,用于指示模块当前的通讯状态。

3.2 指示灯状态

POWER 指示灯状态描述如表 3.1 所示:

表 3.1 POWER 指示灯状态

POWER 指示灯	模块上电状态	
常灭	模块没上电	
常亮	模块已上电	

RUN 指示灯状态描述如表 3.2 所示:

表 3.2 RUN 指示灯状态描述

RUN 指示灯	端口连接状态
常灭	主、从站无连接
常亮	主、从站正常连接
闪烁	主、从站正在通讯

ERROR 指示灯状态描述如表 3.3 所示:

表 3.3 ERROR 指示灯状态描述

ERROR 指示灯	描述
常灭	设备处于正常运行状态
闪烁	设备处于异常状态

网口绿色指示灯状态描述如表 3.4 所示:

表 3.4 网口绿色指示灯状态

网口绿色指示灯	描述
常灭	主、从站无连接
常亮	主、从站正常连接
闪烁	交互数据

网口黄色指示灯闪烁状态描述如表 3.5 所示:

表 3.5 网口黄色指示灯状态

网口黄色指示灯	描述
常灭	主、从站无连接
常亮	连接正常、正在通讯

第4章 对象字典

4.1 通用参数

索引	子索引	名称	数据类型	访问	描述	
				属性		
1000H	00Н	Device type	Unsigned32	ro	Device type and profile(设备类型)	
					初始值: 0xFFF0192	
1001H	00Н	Error register	Unsigned8	ro	Error register (错误寄存器)	
					初始值: 0x00	
1008H	00Н	Device name	Vis String8	ro	Manufacturer's designation	
					初始值: EMO6AX-E1	
1018H		Identity		r	(设备信息)	
	00Н	Largest sub-index	Unsigned8	r	Largest sub-index supported » 04h	
	01H	Vendor ID	Unsigned32	r	Vendor ID	
					初始值: 0x00004321	
	02Н	Product code	Unsigned32	r	Product code	
					初始值: 0x1000043	
	03Н	Revision	Unsigned32	r	Revision number	
					初始值: 0x20160315	

4.2 参数配置 (SDO)

索引	子索引	名称	数据类型	访问属性	初始值	描述
3002h		Sample ADO		ro		
	01H	Sample ADO 0	Usigned32	ro	0	AD0采样值0
	02Н	Sample ADO 1	Usigned32	ro	0	AD0采样值1
	03Н	Sample ADO 2	Usigned32	ro	0	AD0采样值2

	04H	Sample ADO 3	Usigned32	ro	0	AD0采样值3
3003h		Sample AD1	Ŭ.	ro		7,1011
	01H	Sample AD1 0	Usigned32	ro	0	AD1采样值0
	02Н	Sample AD1 1	Usigned32	ro	0	AD1采样值1
	03Н	Sample AD1 2	Usigned32	ro	0	AD1采样值2
	04H	Sample AD1 3	Usigned32	ro	0	AD1采样值3
3004h		Sample AD2	Ŭ.	ro		7,077
	01H	Sample AD2 0	Usigned32	ro	0	AD2采样值0
	02Н	Sample AD2 1	Usigned32	ro	0	AD2采样值1
	03Н	Sample AD2 2	Usigned32	ro	0	AD2采样值2
	04H	Sample AD2 3	Usigned32	ro	0	AD2采样值3
3005h		Sample AD3	Ŭ.	ro		7,1017
	01H	Sample AD3 0	Usigned32	ro	0	AD3采样值0
	02H	Sample AD3 1	Usigned32	ro	0	AD3采样值1
	03H	Sample AD3 2	Usigned32	ro	0	AD3采样值2
	04H	Sample AD3 3	Usigned32	ro	0	AD3采样值3
3006Н	00H	Sample DAO	Usigned32	rw	0	设置DAO通道模拟量输出
3007H	00Н	Sample DA1	Usigned32	rw	0	设置DA1通道模拟量输出
3008H	00H	ADDAControl	Usigned16	rw	0	bit0 表示是否输出DA值
300011	0011	ADDACOILLIOI	USIGNEUIU	l w	O O	bt1-bit5 保留
						bit6-bit12 表示输出AD
						〒1112 表 水 桐 山 AD 日
602511	0011	EnnonCodo	Ugi gnad16	710		
603FH	ООН	ErrorCode	Usigned16	ro	0	错误码

第5章 使用案例

雷赛模拟量模块 EM06AX-E1 符合 EtherCAT 标准,是一个标准的 EtherCAT 从站,通过 EtherCAT 总线端口可以支持 EtherCAT 总线主站的扩展使用,如雷赛 SMC600-IEC 系列、PMC300 系列、BAC300 系列和 PAC 系列运动控制器。以下分别以 DMC-E3032 控制卡、SMC606-IEC 和 BAC332E 运动控制器作为主站和 EM06AX-E1 作为从站配合使用为例介绍从站的使用方法。其中 DMC-E3032 控制卡使用 C#编程,SMC606-IEC 示例使用 IEC 编程方式,BAC332E 示例使用 BASIC 和 API 编程方式。

5.1 IEC 示例

5.1.1 硬件连接

雷赛 SMC606 控制器的外形如下图 5.1 所示:

图 5.1 SMC606 外形

该控制器采用 24V 直流电源供电, 支持 1 路 EtherCAT。

该控制器的 EtherCAT 端口信号如表 5.1 所示:

EtherCAT 信号 信号描述 说明 TX+发送信号+ TX-发送信号-3 RX+ 接收信号+ 4 NC 保留 5 NC 保留 6 RX-接收信号-7 NC 保留 8 NC 保留

表 5.1 接口引脚号和信号关系表

各端口的详细描述请参考 SMC600 系列运动控制器 (IEC 版) 用户手册。

设备间的连接:通过超五类带屏蔽层的网线将 SMC606 的 EtherCAT 口与 EM06AX-E1 的 EtherCAT IN 口连接。

模块上的拨码开关,采用出厂默认配置。

5.1.2 EtherCAT 主站的添加及配置

在IEC Studio中,先创建一个使用SMC606控制器的应用工程(详细的创建过程请参考《雷赛SMC IEC Studio使用手册》)。

在已经创建好的工程中,选择设备右击,在弹出的菜单中选择"添加设备",如图5.2所示:

图 5.2 添加设备

在弹出的窗口中选择"现场总线"=>"EtherCAT"=>"EtherCAT Master", 然后点击添加设备, 如图5.3所示:

图 5.3 添加 EtherCAT 总线

EtherCAT 任务配置: 需将 EtherCAT 任务设置为最高优先级,将总线任务放在主任务中。如图 5.4 所示:

图 5.4 配置任务

注意: EtherCAT 任务与带运动模块的任务必须在同一个任务下,且为最高优先级。

主站配置: 双击设备列表 EtherCAT 主站, 弹出主站设置界面, 如图 5.5 所示主站界面:

(1) 通用界面 (General):

图 5.5 主站界面

主动配置主站/从站:主从站地址的配置方式。勾选此项,添加的主从站会自动配置地址。采用默认设置即可。

网络名称:采用默认设置,设置为 eth1。

总线周期时间(Cycle Time): 总线控制器支持 250us、500us、1ms、2ms、4ms 总线周期(根据总线控制器所带的负载而定),用户根据连接从站数量的多少选择合适的总线周期;

同步偏移(Sync Offset): 该值配置范围为 $1^{\sim}50$,采用默认设置(默认值为 1)。该参数推荐值为 1 和 20。

诊断信息:用于实时显示主站的当前状态信息。如果显示"All slaves done!",则表示主站配置已经完成,总线上所有从站为"操作状态",如图 5.6 所示:

图 5.6 在线模式显示诊断信息

(2) 状态界面 (Status):

在线模式下,状态界面处于观测状态,指示 EtherCAT 总线运行状态,如图 5.7 所示:

图 5.7 主站状态界面

(3) 信息界面 (Information):

信息界面主要显示 EtherCAT 主站名称、厂商、类型、ID、版本及描述等信息,如图 5.8 所示:

图 5.8 主站信息界面

5.1.3 模块的添加

在 Studio 中,添加 EtherCAT 从站模块有两种方式: 手动添加方式和自动扫描方式。无论使用哪种方式,在添加从站之前,设备库中必须已经具有该设备(如果没有,请先添加该设备,具体的添加步骤请参考《雷赛 SMC IEC Studio 使用手册》)。

(1) 手动添加模块

选择 EtherCAT_Master, 右击选择"添加设备"如图 5.9 所示, 在弹出的窗口选择"EtherCAT" => "从站" => "EM06AX-E1" 然后点击添加设备。如图 5.10 所示。

技术支持热线:0755-26417593 网址:<u>www.szleadtech.com</u>

图 5.10 添加 EMO6AX-E1 模块

(2) 自动扫描添加设备

首先,双击"Device",选择"扫描网络",选择扫描出的设备后,点击"确定",此时 Studio 已与控制器建立通讯,如图 5.11 所示:

图 5.11 扫描网络

将当前应用工程下载到控制器中,然后,右击"EtherCAT_Master"选择"扫描设备",如图 5.12 所示:

图 5.12 扫描设备

得到如图 5.13 所示设备列表,点击"复制所有设备到工程中",左侧设备列表会自动添加扫描出来的从站,如图 5.14 所示。

图 5.13 扫描网络

图 5.14 添加从站完成

5.1.4 模块配置

双击左侧设备列表"EM06AX-E1",可以看到从站的参数配置界面,如下图 5.15 所示。通常情况下,采用默认配置。

图 5.15 EM06AX-E1 参数配置界面

点击 "EtherCAT I/O映射"页面,可配置的映射参数如下图 5.16 所示。

图 5.16 EMO6AX-E1 的 IO 映射界面

5.1.5 应用示例

(1) 程序功能:

在 SMC606 控制器上实现对 EM06AX-E1 模块的 DA0 输出, AD0 读取控制。

- a. 将 DAO 通道的电压输出连接到 ADO 通道的电压输入;
- b. 将 DAO 输出 2V 电压时, ADO 采集到 2V 电压。
- c. 将 DAO 输出 5V 电压时, ADO 采集到 5V 电压。

(2) 工程源码:

EtherCAT 扩展-"EtherCAT AD"。

(3) 编辑程序如下:

- a. 声明变量: EtherCAT DAO、EtherCAT ADO、iState。
- b. 编写程序,如下图 5.17 所示:

技术支持热线:0755-26417593 网址:<u>www.szleadtech.com</u>

图 5.17 程序编码界面

4) 配置 EtherCAT I/O 映射:

配置 AD 模块的 "EtherCAT I/O 映射"参数,配置完成后的界面如下图 5.18 所示:

图 5.18 配置 IO 映射

5) 运行程序:

- a. 将 iState 设置为 1, DAO 输出 2V 电压, ADO 采集到 2V 电压。
- b. 将 iState 设置为 2, DAO 输出 5V 电压, ADO 采集到 5V 电压。

5.2 BASIC 示例

5.2.1 硬件连接

雷赛 BAC332E 控制器的外观如下图 5.19 所示:

图 5.19 BAC332E 外观图

该控制器采用 24V 直流电源供电,具有 1路 EtherCAT。

该控制器的 EtherCAT 端口信号如表 5.2 所示:

EtherCAT 信号 信号描述 说明 TX+发送信号+ TX-发送信号-3 RX+ 接收信号+ 4 NC 保留 5 NC 保留 6 RX-接收信号-7 NC 保留 8 NC 保留

表 5.2 接口引脚号和信号关系表

各端口的详细描述请参考 BAC332E 系列运动控制器用户手册。

设备间的连接: 通过超五类带屏蔽层的网线将 BAC332E 的 EtherCAT 口与 EM06AX-E1 的 EtherCAT IN 口连接。

模块上的拨码开关,采用出厂默认配置。

5.2.2 EtherCAT 主站的添加及配置

打开 SMC BASIC STUDIO 编程软件之后,需要新建一个工程(详细建立工程过程请参考《BAC332E 用户使用手册》)。在该工程中会自动添加 EtherCAT 主站。主站的参数除了通讯周期时间之外,其他的参数不需要用户配置,保持默认即可。连接上控制器之后,在左侧"设备"栏,双击"EtherCAT_0"即可以看到主站的相关信息,如图 5. 20 所示:

图 5.20 BAC332E 主站界面

5.2.3 模块的添加

在 SMC BASIC STUDIO 编程软件中,可以手动添加从站模块和自动扫描从站模块。在添加从站之前,必须保证设备库中有对应的模块设备描述文件,具体操作请参考《BAC332E 用户使用手册》里"安装设备描述文件"章节。

1) 手动添加

在"工程"栏的目录里,选中主站"EtherCAT_0",然后点击鼠标右键,选择"添加 从站"在弹出的窗口中找到对应的设备描述文件,如图 5.21 所示:

图 5.21 添加从站模块

然后选择"添加从设备",在左侧"工程"目录下可以找到添加成功的模块。

2) 自动扫描

在"工程"栏的目录里,选中主站"EtherCAT_0",然后点击鼠标右键,选择"扫描设备",扫描成功后会提示是否下载对应的配置文件,同时主站目录下会出现扫描到的从站模块,如图 5.22 所示

图 5.22 自动扫描设备

选择"是"; 下载成功后会重启系统,双击从站 "Slave 1001[EM06AX-E1](1001)"

,可以看到从站模块的信息,如图5.23所示

图 5.23 从站模块信息

在EtherCAT设备编辑器中,可以看到从站模块的所有信息,包括从站地址、同步时间周期、PDO、时钟、模块信息等。从站的参数都是系统默认匹配的,不需要用户修改。如下图所示:

图 5.24 从站模块信息

图 5.25 从站模块信息

图 5.26 从站模块信息

图 5.27 从站模块信息

图 5.28 从站模块信息

至此, 从站模块的添加已经完成。

5.2.4 模块的配置

双击"工具"栏中的EtherCAT主站"EtherCAT_0",可以看到EtherCAT主站的包含信息。模拟量输入输出硬件映射到扩展TxPD0以及扩展RxPD0,并给4路模拟量输入分配了4个地址,给2路模拟量输出分配了2路地址,后续程序中控制模拟量的输入和输出都是通过对扩展TxPD0和扩展RxPD0的读写完成的。如图5.29以及图5.30所示

图 5.29 主站设备信息(AD)

图 5.30 主站设备信息 (DA)

5.2.5 BASIC 应用例程

(1) 程序功能:

在 BAC332E 控制器上实现对 EM06AX-E1 模块的 DA0 输出, AD0 读取进行控制。

- a. 将 DAO 通道的电压输出连接到 ADO 通道的电压输入:
- b. 将 DAO 输出 2V 电压时, ADO 采集到 2V 电压。
- c. 将 DAO 输出 5V 电压时, ADO 采集到 5V 电压。

(2) 需要的资源:

由于模拟量的输入输出通道被映射到了扩展 RxPDO 和扩展 TxPDO, 所以想要实现对模拟量 硬件的控制就需要对扩展 RxPDO 和扩展 TxPDO 进行读写操作。需要用到以下函数来实现。

1. NMCSWriteRxpdoExtra(WORD PortNo, WORD address, WORD DataLen, DWORD Value)

功能:写扩展 RxPDO

参数: PortNum: 端口号,0,1 表示 CANOpen,2 表示 EtherCAT 端口

Address: 扩展 PDO 的首地址

DataLen:数据长度,按16bit 计算,最大值为2(表示32bit 数据)

Value: 数据值

返回值: 错误码

2. NMCSReadRxpdoExtra(WORD PortNo, WORD address, WORDDataLen, DWORD* Value)

功能: 读扩展 RxPDO

参数: PortNum: 端口号, 0,1 表示 CANOpen, 2 表示 EtherCAT 端口

address: 扩展 PDO 的首地址

DataLen:数据长度,按16bit 计算,最大值为2(表示32bit 数据)

Value: 数据值

返回值: 错误码

3. NMCSReadTxpdoExtra(WORD PortNo, WORD address, WORDDataLen, DWORD* Value)

功能: 读扩展 TxPDO

参数: PortNum: 端口号, 0,1 表示 CANOpen, 2 表示 EtherCAT 端口

address: 扩展 PDO 的首地址

DataLen: 数据长度,按 16bit 计算,最大值为 2 (表示 32bit 数据)

Value: 数据值

返回值:错误码

4. short nmcs_write_rxpdo_extra(WORD ConnectNo, WORD PortNum, Word address, Word DataLen.int Value)

功能:设置从站扩展有符号 RxPDO 值

参数: ConnectNo 控制器号

PortNum EtherCAT 端口号,固定为 2

address 扩展 PDO 的首地址

DataLen 数据长度,按 16bit 计算,最大值为 2 (表示 32bit 数据)

Value 数据值

返回值: 错误代码

5. short nmcs_read_txpdo_extra(WORD ConnectNo, WORD PortNum, Word address, Word DataLen, int * Value)

功 能: 读取从站扩展有符号 TxPD0 值

参数: ConnectNo 控制器号

PortNum EtherCAT 端口号, 固定为 2

address 扩展 PDO 的首地址

DataLen 数据长度,按16bit 计算,最大值为2(表示32bit 数据)

Value 数据值

返回值:错误代码

(3) 编辑程序

模拟量的控制有三个步骤: 打开 ADDA 使能开关、对模拟量输出进行写操作、对模拟量输入进行读操作:

打开 ADDA 使能开关,该开关在使能状态下才有模拟量输出,否则模拟量输出无效。

该开关同样需要通过写扩展 RxPD0 来完成。在主站信息中可以看到分配的地址为 4,数据大小为 16 位,如图 5.31 所示。

图 5.31 扩展 RxPDO

由上图数据,可以使用对应的函数来操作:

dim DAEnAddr 'DA 允许输出变量(ADDA Control)控制地址

DAEnAddr=4 '地址为 4

dim DAEnLen 'DA 允许输出数据大小

DaEnLen=1 '大小为 16 位

dim DAEnValue 'DA 允许输出控制值

DAEnValue=1 '值为1

ret=NMCSWriteRxPD0Extra(2, DAEnAddr, DAEnLen, DAEnValue) '写扩展 RxPD0,将 DA 允许输出变量置为 1

对模拟量输出进行写操作: 在图 5.31 中,可以看到两路模拟量输出对应了两个变量,分别是通道 0 对应 Sample DA0,分配给这个变量的地址是 0,数据大小是 32 位; 通道 1 对应 Sample DA1,分配给这个变量的地址是 2,数据大小是 32 位,可以使用对应的函数来操作这两个变量:

dim DACHOAddr '通道 0 输出地址

DACHOAddr=0 '地址为 0

dim DACHOVLen '通道 0 变量数据长度

DACHOVLen=2 '数据长度为 32 位

dim DACHOValue '通道 0 变量值

DACHOValue =20000 '值为 20000, 对应通道 0 模拟量输出为 2V

ret=NMCSWriteRxPD0Extra(2, DACHOAddr, DACHOVLen, DACHOValue) '写扩展 RxPD0

dim DACH1Addr '通道1输出地址

DACH1Addr=2 '地址为 2

dim DACH1VLen '通道1变量数据长度

DACH1VLen=2 '数据长度为 32 位

dim DACH1Value '通道1变量赋值

DACH1Value=25000 '值为 25000, 对应通道 1 模拟量输出为 2.5V

ret=NMCSWriteRxPD0Extra(2, DACH1Addr, DACH1VLen, DACH1Value) '写扩展 RxPD0

对模拟量进行读操作:如图 5.32 所示,EM06AX-E1 的 4 路模拟量输入对应了 4 个变量变量 Sample AD0 0,分配地址为 0,数据大小为 32 位;变量 Sample AD1 0,分配地址为 2,数据大小为 32 位;变量 Sample AD2 0,分配地址为 4,数据大小为 32 位;变量 Sample AD3 0,分配地址为 6,数据大小为 32 位;可以使用对应的函数来操作这 4 个变量:以下以 AD 通道 0 为例 做说明

图 5.32 AD 通道

dim ADCHOAddr '通道 0 输出地址

ADCHOAddr = 0 '地址为 0

dim ADCHOVLen '通道 0 变量数据长度

ADCHOVLen =2 '数据长度为 32 位

dim ADCHOValue '通道 0 变量值

ret=NMCSReadTxPD0Extra(2, ADCH0Addr, ADCH0VLen, ADCH0Value) '读扩展 TxPD0, 获取模拟量输入的值

print ADCHOValue '打印模拟量输入值

(4) 工程源码

auto:

undim *

dim DAEnAddr 'DA 允许输出控制地址

DAEnAddr=4 '地址为 4

dim DAEnLen 'DA 允许输出数据大小

DAEnLen=1 '大小为 16 位


```
dim DAEnValue
                        'DA 允许输出控制值
DAEnValue=1
                        '值为1
dim DACHOAddr
                        '通道0输出地址
DACHOAddr = 0
                         '地址为0
                        '通道0变量数据长度
dim DACHOVLen
DACHOVLen = 2
                         '数据长度为32位
                               '通道0变量值
dim DACHOValue, DACHOValue1
DACHOValue = 20000
                         '值为 20000,对应模拟量输出为 2V
                        '值为 20000,对应模拟量输出为 5V
DACHOValue1=50000
dim ADCHOAddr
                    '通道0输出地址
ADCHOAddr = 0
                     '地址为0
dim ADCHOVLen
                    '通道0变量数据长度
                     '数据长度为32位
ADCHOVLen = 2
                    '通道0变量值
dim ADCHOValue
ret=NMCSWriteRxPDOExtra(2, DAEnAddr, DAEnLen, DAEnValue) '写扩展 RxPDO, DA 允许输出
                        '函数返回值,监控是否调用出错
print ret
while true
   if modbus_bit(100)=1 then
                              'modbus 赋值触发模拟量输出 2V
     modbus bit (100)=0
      ret=NMCSWriteRxPD0Extra(2, DACH0Addr, DACH0VLen, DACH0Value) '写扩展 RxPD0, 通道 0 输出 2V
   endif
   if modbus bit (101)=1 then
                              'modbus 赋值触发模拟量输出 5V
      modbus_bit(101) = 0
      ret=NMCSWriteRxPD0Extra(2, DACH0Addr, DACH0VLen, DACH0Value1) '写扩展 RxPD0, 通道 0 输出 5V
   endif
   if modbus_bit (102)=1 then 'modbus 赋值触发读取模拟量输入
      modbus_bit(102)=0
       ret=NMCSReadTxPD0Extra(2, ADCH0Addr, ADCH0VLen, ADCH0Value) '读扩展 TxPD0, 获取模拟量输入的值
```

技术支持热线:0755-26417593 40

print ADCHOValue

'打印模拟量输入值

endif

wend

(5) 运行程序:

将 DAO 通道的电压输出连接到 ADO 通道的电压输入;

- a. 触发 modbus bit (100) 为 1,输出 2V 电压到 DA 通道 0
- b. 触发 modbus bit (102) 为 1, 读取 AD 通道 0
- c. 触发 modbus bit (101) 为 1,输出 5V 电压到 DA 通道 0
- d. 触发 modbus bit (102 为 1, 读取 AD 通道 0

5.2.6 API 应用例程

```
//设置模拟量模块 DA输出使能,AD输入采样4通道
LTDMC.nmcs_write_rxpdo_extra(_ConnectNo, 2, 4, 2, 257);

//设置DAO输出,软件值写入值=设置电压值*10000

LTDMC.nmcs_write_rxpdo_extra(_ConnectNo, 2, 0, 2, Convert. ToUInt32(Convert. ToDouble(textBox19. Text)*10000));

//读取各通道电压值
uint Value = 0;
uint[] ADValue = new uint[4];

for (ushort i = 0; i < 4; i++)

{
    LTDMC.nmcs_read_txpdo_extra(_ConnectNo, 2, (ushort)(2*i), 2, ref ADValue[i]);
}

textBox9. Text = (Convert. ToDouble(ADValue[0]) / 10000). ToString();

textBox10. Text = (Convert. ToDouble(ADValue[1]) / 10000). ToString();
```

技术支持热线:0755-26417593 网址:<u>www.szleadtech.com</u>


```
textBox11.Text = (Convert.ToDouble(ADValue[2]) / 10000).ToString();
textBox12.Text = (Convert.ToDouble(ADValue[3]) / 10000).ToString();
```

结论: 在 textBox19. Text 输入电压值,然后点击输出,textBox9. Text 将会显示跟 textBox19. Text 里一样的电压值。

技术支持热线: 0755-26417593 42

5.3 控制卡操作 EM06AX-E1 模拟量模块 C#示例

5.3.1 硬件连接

雷赛 DMC-E3032 控制卡的外形如下图 5.33 所示:

图 5.33 DMC-E3032

该控制卡直接插在工控机上的 PCI 插槽上,具有 1 路 EtherCAT。 该控制卡的 EtherCAT 端口信号如表 5.3 所示:

表 5.3 接口引脚号和信号关系表

EtherCAT 信号	信号描述	说明	
1	TX+	发送信号+	
2	TX-	发送信号-	
3	RX+	接收信号+	
4	NC	保留	
5	NC	保留	
6	RX-	接收信号-	
7	NC	保留	
8	NC 保留		

各端口的详细描述请参考 DMC-E3032 系列运动控制卡用户手册。

设备间的连接: 通过超五类带屏蔽层的网线将 DMC-E3032 的 EtherCAT 口与 EM06AX-E1 的 EtherCAT IN 口连接。

模块上的拨码开关,采用出厂默认配置。

5.3.2 EtherCAT 主站的添加及配置

打开 DMC MOTION 后,需要新建一个连接(详细建立工程过程请参考《DMC-E3032 用户使用手册》)。在面板上点击总线配置。如图 5.34 所示:

图 5.34

5.3.3 模块的添加

在"工程"栏的目录里,选中主站"EtherCATSuite Master Unit",然后点击鼠标右键,选择"扫描设备",扫描成功后会提示是否下载对应的配置文件,同时主站目录下会出现扫描到的从站模块,如图 5.35 所示

图5.35

选择"确定"; 下载成功后会重启系统,双击从站 "Slave_1002[EM06AX-E1](1002)",可以看到从站模块的信息,如图5.36所示

图 5.36

5.3.4 模块的配置

切换到主站选项栏,可以看到EtherCAT主站的包含信息。

模拟量输入输出硬件映射到扩展TxPDO以及扩展RxPDO,并给4路模拟量输入分配了4个地

址,给2路模拟量输出分配了2路地址,后续程序中控制模拟量的输入和输出都是通过对扩展TxPD0和扩展RxPD0的读写完成的。如图5.37以及图5.38所示。

图 5.37

图 5.38

5.3.5 应用例程

(1) 程序功能:

在 DMC-E3032 控制卡上实现对 EM06AX-E1 模块的 DA0 输出, AD0 读取控制。

- a. 将 DAO 通道的电压输出连接到 ADO 通道的电压输入;
- b. 将 DAO 输出 2V 电压时, ADO 采集到 2V 电压。
- c. 将 DAO 输出 5V 电压时, ADO 采集到 5V 电压。

(2) 需要的资源:

由于模拟量的输入输出通道被映射到了扩展 RxPDO 和扩展 TxPDO, 所以想要实现对模拟量硬件的控制就需要对扩展 RxPDO 和扩展 TxPDO 进行读写操作。需要用到以下函数来实现。

1. short nmc_read_txpdo_extra(WORD CardNo, WORD PortNum, Word address, Word DataLen,
int * Value)

功 能:读取从站扩展有符号 TxPDO 值

参数: CardNo 控制卡卡号

PortNum EtherCAT 端口号,固定为2

address 扩展 PDO 的首地址

DataLen 数据长度,按 16bit 计算,最大值为 2 (表示 32bit 数据)

Value 数据值

返回值: 错误代码

2. short nmc_write_rxpdo_extra(WORD CardNo, WORD PortNum, Word address, Word DataLen, int Value)

功 能:设置从站扩展有符号 RxPDO 值

参数: CardNo 控制卡卡号

PortNum EtherCAT 端口号,固定为 2

address 扩展 PDO 的首地址

DataLen 数据长度,按 16bit 计算,最大值为 2 (表示 32bit 数据)

Value 数据值

返回值:错误代码

(3) 编辑程序

模拟量的控制有三个步骤: 打开 ADDA 使能开关、对模拟量输出进行写操作、对模拟量输

入进行读操作:

打开 ADDA 使能开关,该开关在使能状态下才有模拟量输出,否则模拟量输出无效。DA 使能输出的数据位设置根据设备参数 3008H 来设置,此模块为 4 通道输入,故 3008H 的二进制表示为 100000001,转为二进制为 257.

该开关同样需要通过写扩展 RxPD0 来完成。在主站信息中可以看到分配的地址为 4,数据大小为 2 位,如图 5.39 所示。

3008H	00H	ADDAControl	Usigned16	rw.	0	bit0 表示是否输出DA值
						bt1-bit5 保留
						bit6-bit12 表示输出AD采
						样值个数

图 5.39

(4) 工程源码

```
//设置模拟量模块 DA输出使能,AD输入采样4通道
LTDMC.nmc_write_rxpdo_extra(_CardID, 2, 4, 2, 257);
//设置DAO输出,软件值写入值=设置电压值*10000
LTDMC.nmc_write_rxpdo_extra(_CardID, 2, 0, 2, Convert.ToUInt32(Convert.ToDouble(textBox19.Text)*10000));
//读取各通道电压值
uint Value = 0;
uint[] ADValue = new uint[4];
for (ushort i = 0; i < 4; i++)
{
    LTDMC.nmc_read_txpdo_extra(_CardID, 2, (ushort)(2*i), 2, ref ADValue[i]);
}
textBox9.Text = (Convert.ToDouble(ADValue[0]) / 10000).ToString();
textBox10.Text = (Convert.ToDouble(ADValue[1]) / 10000).ToString();
textBox11.Text = (Convert.ToDouble(ADValue[2]) / 10000).ToString();
```


textBox12.Text = (Convert.ToDouble(ADValue[3]) / 10000).ToString();

(5) 运行程序:

将 DAO 通道的电压输出连接到 ADO 通道的电压输入;

在 textBox19. Text 输入电压值,然后点击输出,textBox9. Text 将会显示跟 textBox19. Text 里一样的电压值。

深圳市雷赛控制技术有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A 3 栋 9 楼

邮 编: 518052

电 话: 0755-26415968

传 真: 0755-26417609

Email: info@szleadtech.com.cn

网 址: http://www.szleadtech.com.cn